7 research outputs found

    Building Efficient Query Engines in a High-Level Language

    Get PDF
    Abstraction without regret refers to the vision of using high-level programming languages for systems development without experiencing a negative impact on performance. A database system designed according to this vision offers both increased productivity and high performance, instead of sacrificing the former for the latter as is the case with existing, monolithic implementations that are hard to maintain and extend. In this article, we realize this vision in the domain of analytical query processing. We present LegoBase, a query engine written in the high-level language Scala. The key technique to regain efficiency is to apply generative programming: LegoBase performs source-to-source compilation and optimizes the entire query engine by converting the high-level Scala code to specialized, low-level C code. We show how generative programming allows to easily implement a wide spectrum of optimizations, such as introducing data partitioning or switching from a row to a column data layout, which are difficult to achieve with existing low-level query compilers that handle only queries. We demonstrate that sufficiently powerful abstractions are essential for dealing with the complexity of the optimization effort, shielding developers from compiler internals and decoupling individual optimizations from each other. We evaluate our approach with the TPC-H benchmark and show that: (a) With all optimizations enabled, LegoBase significantly outperforms a commercial database and an existing query compiler. (b) Programmers need to provide just a few hundred lines of high-level code for implementing the optimizations, instead of complicated low-level code that is required by existing query compilation approaches. (c) The compilation overhead is low compared to the overall execution time, thus making our approach usable in practice for compiling query engines

    Building Efficient Query Engines in a High-Level Language

    No full text
    In this paper we advocate that it is time for a radical rethinking of database systems design. Developers should be able to leverage high-level programming languages without having to pay a price in efficiency. To realize our vision of abstraction without regret, we present LegoBase, a query engine written in the high-level programming language Scala. The key technique to regain efficiency is to apply generative programming: the Scala code that constitutes the query engine, despite its high-level appearance, is actually a program generator that emits specialized, low-level C code. We show how the combination of high-level and generative programming allows to easily implement a wide spectrum of optimizations that are difficult to achieve with existing low-level query compilers, and how it can continuously optimize the query engine. We evaluate our approach with the TPC-H benchmark and show that: (a) with all optimizations enabled, our architecture significantly outperforms a commercial in-memory database system as well as an existing query compiler, (b) these performance improvements require programming just a few hundred lines of high-level code instead of complicated low-level code that is required by existing query compilers and, finally, that (c) the compilation overhead is low compared to the overall execution time, thus making our approach usable in practice for efficiently compiling query engines. 1

    Automatic Synthesis of Out-of-Core Algorithms

    Get PDF
    We present a system for the automatic synthesis of efficient algorithms specialized for a particular memory hierarchy and a set of storage devices. The developer provides two independent inputs: 1) an algorithm that ignores memory hierarchy and external storage aspects; and 2) a description of the target memory hierarchy, including its topology and parameters. Our system is able to automatically synthesize memory-hierarchy and storage-device-aware algorithms out of those specifications, for tasks such as joins and sorting. The framework is extensible and allows developers to quickly synthesize custom out-of-core algorithms as new storage technologies become available

    Go Meta! A Case for Generative Programming and DSLs in Performance Critical Systems

    Get PDF
    Most performance critical software is developed using very low-level techniques. We argue that this needs to change, and that generative programming is an effective avenue to enable the use of high-level languages and programming techniques in many such circumstances.ISSN:1868-896
    corecore